Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions
Seyed Farhan Moosavian,
Daryoosh Borzuei and
Abolfazl Ahmadi
Renewable Energy, 2021, vol. 165, issue P1, 301-320
Abstract:
The ever-increasing consumption of non-renewable energies, including petroleum and gas, besides a decrease in the fossil fuel reserves, necessitates more attention to clean and renewable energy resources more than ever. In these conditions, solar energy is recognized as one of the most reliable options for producing thermal and electric energy. The development of a numerical model for a parabolic solar collector in MATLAB software was carried out in this research. The effect of climate changes on the energy, exergy, and environmental aspects of these systems was investigated by considering an economic approach. The performance of the parabolic solar collector in terms of the Energy-Exergy-Economic-Environmental (4E) was carried out in 5 cities (Rasht, Shiraz, Tehran, Abadan, and Sanandaj) of Iran as a representative of diverse climate. The results of this investigation indicate that the parabolic solar collectors in Shiraz, which has Mediterranean Climate (Csc), has the highest thermal energy efficiency up to 71.97% among these cities. On the other hand, Sanandaj, with Humid Continental Climate (Dsa), enjoys maximum exergy efficiency (22.01%). From an environmental perspective with respect to the cost of CO2 production, Rasht with a Humid Subtropical Climate (Cfa) has an annual cost of $0.75 based on energy and $0.16 based on exergy.
Keywords: 4E analysis; Solar parabolic collectors; Environmental analysis; Life-cycle analysis (LCA) (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120317778
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:165:y:2021:i:p1:p:301-320
DOI: 10.1016/j.renene.2020.11.036
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().