EconPapers    
Economics at your fingertips  
 

Drying kinetics of natural rubber sheets under two solar thermal drying systems

N.M. Ortiz-Rodríguez, J.F. Marín-Camacho, A. Llamas- González and O. García-Valladares

Renewable Energy, 2021, vol. 165, issue P1, 438-454

Abstract: This work describes the thermal behavior and evaluation of kinetics drying of natural rubber sheets using two solar drying technologies: direct and indirect. The solar drying tests were carried out simultaneously in order to compare the behavior under same weather conditions. The moisture content of the rubber sheets was reduced from 45.8 to 0.59% and from 49.7 to 0.33% on a dry basis (d.b.) for direct solar drying and indirect solar drying, respectively. The direct drying mode was carried out for 12 days with average temperature and relative humidity inside the greenhouse, during sunny hours, of 37.04 °C and 14.1%, respectively. Meanwhile, the indirect drying operation was carried out in 9 days (61.62 h intermittently) with 61 °C and 4.77%, respectively. The average global energy efficiency of the field of SAH was 33.77%. Thirteen thin layer models were used to evaluate the drying behavior of which the Modified Henderson and Pabis model was the best to describe the solar drying of rubber sheets for the direct and indirect system. As a conclusion, the direct greenhouse-type solar dryer is recommended for small producers and the indirect tunnel-type solar dryer for companies with high and continuous production.

Keywords: Direct solar drying; Indirect solar drying; Rubber sheet; Drying kinetic; Thin layer models; Solar energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120317766
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:165:y:2021:i:p1:p:438-454

DOI: 10.1016/j.renene.2020.11.035

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:165:y:2021:i:p1:p:438-454