EconPapers    
Economics at your fingertips  
 

Graphite-based shape-stabilized composites for phase change material applications

Avia Ohayon-Lavi, Adi Lavi, Amr Alatawna, Efrat Ruse, Gennady Ziskind and Oren Regev

Renewable Energy, 2021, vol. 167, issue C, 580-590

Abstract: Phase Change Materials (PCM) possess high heat storage density, but commonly have low thermal conductivity that results in poor heat transfer. Another common problem is the shape stabilization of the storage medium. These problems could be solved by loading the medium with thermally conductive fillers, such as graphite, and encapsulating it in a thermally conductive polymer matrix shell, hence enhancing the thermal properties of both. We suggest a ternary system in which a graphite-epoxy composite provides an encapsulating scaffold to the paraffin, which is also loaded with graphite-based filler. Various graphite-based fillers differing in sizes and geometry were explored, aiming at optimizing their intrinsic properties, such as defect density, and consequently enhancing the thermal properties of the PCM as a whole. It was demonstrated that by judicious choice of the filler, enhancement is achieved for the thermal conductivity of: (1) the shell (epoxy-graphite flakes composite) by 4000% compared to the neat epoxy; (2) the medium (paraffin-graphite flakes composite) by > 2000% compared to the neat paraffin; and (3) the integrated PCM system (paraffin-epoxy-graphite flakes composite) by 1000% compared to that of neat paraffin. The PCM composite is completely preserved during phase change cycling.

Keywords: Thermal conductivity; Graphite; Phase change material; Paraffin; Composite (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120318693
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:167:y:2021:i:c:p:580-590

DOI: 10.1016/j.renene.2020.11.117

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:167:y:2021:i:c:p:580-590