Hydrogen production performance of novel glycerin-based electrolytic cell
Chen Yuan,
Zailun Liu,
Wenhao Gu,
Fei Teng,
Weiyi Hao,
Shah Abid Hussain and
Wenjun Jiang
Renewable Energy, 2021, vol. 167, issue C, 862-868
Abstract:
Mesoporous cobalt oxide/nickel foam (NF) is got by a simple chemical method, and a glycerin-based electrolytic cell is rationally assembled with CoO/NF, in which glycerin-KOH aqueous solution is used as electrolyte. Herein, the influence of anodic glycerin oxidation on cathodic hydrogen production is investigated mainly. At 1.35 V vs. reverse hydrogen electrode (RHE), CoO/NF electrode exhibits a current density of 235.71 mA cm−2 for glycerin oxidation, which is about 2.5 times higher than that over Co3O4/NF. For glycerin oxidation, the Tafel slope (189 mV dec−1) over CoO/NF is much lower, compared to that (286 mV dec−1) over Co3O4/NF, demonstrating the robust electrocatalyic reaction kinetics over CoO/NF. For glycerin-contained electrolytic cell, a cell voltage (1.672 V) is needed to reach 50 mA cm−2, which is obviously lower than that (1.975 V) for conventional electrolytic cell. It is obvious that for glycerin-contained electrolytic cell, the required cell voltage has obviously decreased by 0.303 V. This work demonstrates that the substitution of glycerin oxidation for sluggish four-electron OER reaction can greatly promote water electrolysis to hydrogen production. Moreover, this design can not only degrade environmental pollutants, but also produce clean energy, and the reported strategy is obviously environment-benign and cost-effective.
Keywords: Hydrogen production; Glycerin oxidation; Electrolytic cell; Cobalt oxide (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120319273
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:167:y:2021:i:c:p:862-868
DOI: 10.1016/j.renene.2020.12.004
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().