Analysis of a novel photovoltaic/thermal system using InGaN/GaN MQWs cells in high temperature applications
Xiao Ren,
Jing Li,
Datong Gao,
Lijun Wu and
Gang Pei
Renewable Energy, 2021, vol. 168, issue C, 11-20
Abstract:
The solar cells commonly adopted in the photovoltaic/thermal (PV/T) have negative temperature coefficients, leading to a significant decrement in electrical efficiency as cell’s temperature exceeds 80 °C, and thus the PV/T systems are mainly used at low-temperature applications. A new type of InGaN/GaN multiple quantum wells (InGaN/GaN MQWs) cells have attracted increasing interest in past few years. The cells have positive or near-zero temperature coefficients and are a promising option in medium-high temperature applications. It is the first time that InGaN/GaN MQWs cells are proposed in a PV/T system, and evacuated flat plate PV/T (EFP-PV/T) collectors are employed. A mathematical model is established to investigate the performance of EFP-PV/T collectors using two kinds of InGaN/GaN MQWs cells at high temperatures. Performance comparison with PV/T systems using conventional solar cells is also conducted. As the operating temperature increases to 150 °C, the efficiency of traditional cell-based PV/T collector decreases to 5.21%, while the efficiency of Type-1 InGaN/GaN MQWs has a minor drop from 4.34% to 4.16% and it increases to 2.07% for Type-2 InGaN/GaN MQWs. The characteristics of large absorption coefficient, radiation-hard, and superior thermal stability, and positive or near-zero temperature coefficients make InGaN/GaN MQWs cells suitable for use in high-temperature PV/T systems.
Keywords: InGaN/GaN MQWs cells; Evacuated flat plate collector; Photovoltaic/thermal; Positive temperature coefficient; High temperature (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120319613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:168:y:2021:i:c:p:11-20
DOI: 10.1016/j.renene.2020.12.035
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().