EconPapers    
Economics at your fingertips  
 

Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas

Yuyao Zhang, Yu Kawasaki, Kazuyuki Oshita, Masaki Takaoka, Daisuke Minami, Go Inoue and Toshihiro Tanaka

Renewable Energy, 2021, vol. 168, issue C, 119-130

Abstract: Biogas is a promising renewable biofuel, but hydrogen sulfide (H2S) and siloxanes are major obstacles in the conversion of bioenergy from biogas because they damage biogas-processing equipment. This study evaluated two biogas-purification systems for a simultaneous efficient removal of H2S and decamethylcyclopentasiloxane (D5), and compared their economic performance. An acidic biotrickling filter (BTF) was operated continuously for 90 days to investigate its performance under different H2S and D5 concentrations. Meanwhile, commercial iron-oxide-based adsorbents (IOBAs) and activated carbon (AC) were used in adsorption filters for H2S and D5, respectively. The results show that in terms of the ratio of D5 and H2S concentration (RD5:H2S) and pH of the recycling liquid, which are crucial BTF operating parameters, high elimination for both H2S (1.86 kg/(m3·d)) and D5 (0.282 kg/(m3·d)) was achieved at RD5:H2S of 3.7:16 and pH of 0.86. Economic analysis confirmed that BTF-AC was more profitable than IOBA-AC adsorption over a life span of 10 years because the pre-removal of D5 by a BTF significantly decreased the costs of IOBAs and AC, despite BTFs requiring a higher initial capital investment. In terms of the economic benefit of biogas production of 1200 Nm3/h, the competitive annual cost of 90.5 k$/year indicated that BTF was more profitable, yielding both cost saving and the benefit of providing heat. The advantage of BTF-AC adsorption was a more radical D5-abatament, enabling profit by selling the electricity produced from biogas to the grid.

Keywords: Siloxane; Hydrogen sulfide; Biotrickling filter; Iron-oxide-based adsorbent; Activated carbon; Economic assessment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120319960
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:168:y:2021:i:c:p:119-130

DOI: 10.1016/j.renene.2020.12.058

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:119-130