Experimental and numerical investigation of the impact of operating conditions on thermocline storage performance
S. Vannerem,
P. Neveu and
Q. Falcoz
Renewable Energy, 2021, vol. 168, issue C, 234-246
Abstract:
Thermocline storage performance is studied using a numerical model with three phases (fluid, solid, wall) and one dimension, which is then validated by comparison with experimental results. The impact of the interstitial fluid velocity on storage performance is presented and numerical simulations show the existence of an optimal velocity of 4⋅10−4 m s−1 that maximises the storage utilisation rate (80.6%) for ideal charges between 293 °C and 393 °C. This optimal velocity remains identical when the temperature level of the storage is shifted down and slightly increases to 4.8⋅10−4 m s−1 when the temperature difference is decreased by half (343°C–393 °C). A numerical sensitivity analysis is presented on the impact of heat losses, of thermal diffusion and of the convective heat transfer between the fluid and the solid phases, providing a physical interpretation of the location of the optimum depending on operating conditions. Experimentally, the impact of fluid velocity is too moderate to observe an optimal velocity, especially because of non-ideal inlet temperature conditions, but a deterioration of storage performance is observed at the lowest and highest velocities, with respectively −2.8% and −3.8% compared to the maximal utilisation rate. This moderate influence of both fluid velocity and temperature shows that thermocline storage presents good robustness of its performance to variations in operating conditions.
Keywords: Sensible heat storage; Thermocline; Packed bed; Fluid velocity influence; Numerical model; Experimental (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120319996
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:168:y:2021:i:c:p:234-246
DOI: 10.1016/j.renene.2020.12.061
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().