EconPapers    
Economics at your fingertips  
 

Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating and water cooling treatments

Zhennan Zhu, Pathegama Gamage Ranjith, Hong Tian, Guosheng Jiang, Bin Dou and Gang Mei

Renewable Energy, 2021, vol. 168, issue C, 375-392

Abstract: The bedrocks of deep geothermal reservoirs are exposed to cyclic water cooling during the exploitation of deep geothermal energy. Therefore, it is important to understand the physico-mechanical parameters of geothermal reservoir rocks. This paper reports on the P-wave velocity (Vp), uniaxial compressive strength (UCS) and elastic modulus (E) of granite specimens after exposure to different cyclic heating and water cooling treatments based on laboratory tests, and the relationships between Vp, UCS and E established through regression analysis. The physico-mechanical parameters of granite specimens all decrease remarkably in the first few thermal cycles, and their rates of decrease gradually diminish with thermal cycles, which is beneficial for the long-term exploitation of deep geothermal resources. Both UCS and E show a logarithmic correlation with Vp of granite under different high temperatures. There is a transformation from a linear relation (1 and 5 cycles) to an exponential relation (from 10 to 30 cycles) between Vp, UCS and E with thermal cycles. Such a correlation can provide a good estimation and avoid the costly, time-consuming and tedious mechanical tests. SEM observation reveals the change mechanism of the deterioration of physico-mechanical parameters, which can guide the well borehole stability during the deep geothermal energy exploitation.

Keywords: Granite; Mechanical properties; P-wave velocity; Thermal cycling; Microstructure; Water cooling (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120319741
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:168:y:2021:i:c:p:375-392

DOI: 10.1016/j.renene.2020.12.048

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:375-392