Thermal performance and design parameters investigation of a novel cavity receiver unit for parabolic trough concentrator
Khaled Mohamad and
P. Ferrer
Renewable Energy, 2021, vol. 168, issue C, 692-704
Abstract:
This paper discusses an improved concept for a cavity receiver unit for Solar Parabolic Trough Collectors (PTC) with the application of hot mirror coating (HMC) on a cavity aperture. This design aims to lessen radiant energy losses while operating at higher temperature by incorporating a variety of optically active layers. The theoretical background is presented, which was derived in previous work, and the resulting implementation in a simulation code. The layout and results of an experiment were discussed, which allowed us to make contact with the simulation with minor adjustments. It was seen that the correspondence between the experiment and simulation results was encouragingly close (Chi squared p > 0.8 and p > 0.95), which allowed investigation of simulations of different receiver designs. Simulated outcomes for the temperature of the heat transfer fluid, temperature maps and efficiencies are presented. Our proposal indicates temperature related benefits when compared to other popular designs in terms of the heat transfer fluid temperature and efficiency, which is about 7% higher at temperatures exceeding ∼600 °C.
Keywords: Parabolic trough collector; Receiver unit; Heat transfer fluid; Hot mirror coating; Cavity absorber (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120320292
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:168:y:2021:i:c:p:692-704
DOI: 10.1016/j.renene.2020.12.089
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().