Experimental study of a parabolic trough solar collector with rotating absorber tube
Amir Mohammad Norouzi,
Majid Siavashi,
Rouhollah Ahmadi and
Milad Tahmasbi
Renewable Energy, 2021, vol. 168, issue C, 734-749
Abstract:
In common parabolic trough solar collectors (PTC), solar irradiation is concentrated at the bottom of the absorber tube, causing high surface temperatures, thermal stresses, and deflections with subsequent damages and costs. Also, the performance improvement of PTCs is always of significant importance. The new idea of rotating the absorber tube is proposed, and its effects on the PTC performance are studied experimentally. The effects of the working fluid flow rate (Re number) and the rotational velocity of the absorber tube (Ta number) on the energy characteristics of the PTC are analyzed. Results indicate that the optimal selection of the rotational speed makes it possible to reduce and control the temperature of the absorber by about 60% reduction in the fluid-tube temperature difference, and 15% reduction in the maximum surface temperature. Furthermore, about 17% enhancement in the efficiency of the PTC is attained. The share of the natural and both the rotational and mass flow forced convection forces in the total heat transfer is analyzed through Gr, Re, Ta, and a convection evaluation parameter (CEP). Ta/Re ratio and CEP provide valuable information such that, CEP<0.5 and Ta/Re≈0.5 led to the highest efficiency (average and maximum efficiencies of 30% and 87% respectively).
Keywords: Parabolic trough solar collector; Rotating absorber tube; Surface temperature; Energy efficiency; Enhanced heat transfer (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120320280
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:168:y:2021:i:c:p:734-749
DOI: 10.1016/j.renene.2020.12.088
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().