Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM
Ehsan Mohseni and
Waiching Tang
Renewable Energy, 2021, vol. 168, issue C, 865-877
Abstract:
This study evaluates the efficiency of phase change materials (PCMs) in improvements in thermal performance and thermal comfort of a residential building. The heat transfer of concrete containing PCM, which has been experimentally examined, was numerically modeled and validated in this study. PCMs with melting temperatures ranging from 19 to 29 °C and thicknesses of 5 and 10 mm were applied in different building elements. After finding the optimum PCM with respect to the energy analysis, the impacts of the meteorological parameters and cooling and heating loads were evaluated. The experimental results were in a good agreement with the EnergyPlus PCM module in the numerical model. The results indicated that models integrated with PCM are able to improve the indoor comfort and to reduce the heating and cooling loads and temperature fluctuations. The PCM with a melting temperature of 21 °C and thickness of 10 mm positioned in the roof and wall showed the best performance in the energy consumption and transfering the loads away from the peak demand times. The environmental analysis indicated that the total CO2 emission reduction would be about 264 tone when PCM with 10 mm thick is applied to a building with a life span of 50 years. The shortest payback period for building using PCM-concrete was 16.6 years.
Keywords: Building thermal simulation; Economic analysis; Energy analysis; Energy saving; Phase change materials; Thermal performance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120320528
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:168:y:2021:i:c:p:865-877
DOI: 10.1016/j.renene.2020.12.112
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().