Performance analysis of coaxial heat exchanger and heat-carrier fluid in medium-deep geothermal energy development
Yuting He,
Min Jia,
Xiaogang Li,
Zhaozhong Yang and
Rui Song
Renewable Energy, 2021, vol. 168, issue C, 938-959
Abstract:
Heat extraction from medium-deep thermal energy has become an important research direction in the current geothermal development. In this study, a comprehensive performance evaluation model of a coaxial heat exchanger for the development of medium-deep geothermal resources was established, which combined the formation, wellbore, and heat-carrier fluid flows, as well as the heat transfer and physical property changes. This model was then used to compare and analyze the performances of different heat-carrier fluids and the effects of different well depths and geothermal gradients. Different heat-carrier fluids had significant effects on the performance of the coaxial heat exchanger. Among these, carbon dioxide was the best heat-carrier fluid, with the largest heat output and coefficient of performance. When carbon dioxide was used as the heat-carrier fluid and the well depth structure was determined, there was an injection parameter that produced the optimal performance in the heat exchanger. When coaxial heat exchangers are used to develop medium-deep geothermal energy, the influences of friction and the Joule–Thomson effect cannot be ignored. In formations with large geothermal gradients or wells with large depths, larger tubing and casings should be selected to reduce the negative effects of friction and the Joule–Thomson effect.
Keywords: Geothermal energy; Coaxial heat exchanger; Heat-carrier fluid; Performance analysis; Numerical simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148120320498
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:168:y:2021:i:c:p:938-959
DOI: 10.1016/j.renene.2020.12.109
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().