Multi-objective design optimization of solar air heater for food drying based on energy, exergy and improvement potential
Abderrahmane Benhamza,
Abdelghani Boubekri,
Abdelmalek Atia,
Hicham El Ferouali,
Tarik Hadibi,
Müslüm Arıcı and
Naji Abdenouri
Renewable Energy, 2021, vol. 169, issue C, 1190-1209
Abstract:
Solar air heaters (SAHs) are commonly utilized in different applications due to their simple structure and low setup cost. Optimizing operating parameters of the SAH is highly linked to the desired application. The aim of this study is to determine the optimal geometric and operational parameters of finned SAH for food drying. In order to achieve this goal, response surface methodology was combined with an experimentally validated thermal model of the SAH system. Multi-objective optimization is carried out according to energy-exergy analysis, improvement potential (IP) and outlet temperature suitable for food drying (40–70 °C). Length/width ratio (L/W) (1–5), height of air duct (0.02–0.2), and number of fins (0-60) were the operating variables. The experimental tests were carried out on the indirect type solar dryer composed of SAH and the drying chamber. The developed code led to consistent numerical results that have been confirmed by experimental tests. The optimal parameters were defined as 1.28 L/W, 0.067 m air duct height and 49 fins. In these optimal conditions, the outlet temperature, thermal efficiency, and IP were 52 °C, 51.78% and 1397.34W, respectively. The optimal design improved the thermal efficiency by 15.76% and IP by 19.33%.
Keywords: Optimization; Solar drying; Improvement potential (IP); Response surface methodology; Exergy efficiency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121000938
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:169:y:2021:i:c:p:1190-1209
DOI: 10.1016/j.renene.2021.01.086
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().