EconPapers    
Economics at your fingertips  
 

Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating

Chaofan Chen, Wanlong Cai, Dmitri Naumov, Kun Tu, Hongwei Zhou, Yuping Zhang, Olaf Kolditz and Haibing Shao

Renewable Energy, 2021, vol. 169, issue C, 557-572

Abstract: Deep geothermal energy has become widely exploited in recent years through the use of closed loop systems for building heating. Intended to meet high heating demand in densely populated neighbourhoods, an enhanced U-tube borehole heat exchanger (EUBHE) system, in which a deviated deep borehole is connected with another vertical one to form a closed loop, is introduced in this work. For capacity and efficiency analysis of applying EUBHE systems to extract deep geothermal energy, a 3D numerical model is implemented and established based on the OpenGeoSys software. Through evaluation by thermal performance tests and thermal response tests on the EUBHE system, the maximum sustainable heat extraction rate is found to be 1.2 MW in a single heating season and 1.1 MW in 10 years, which can provide heating to more than 35,000 m2 of residential buildings located in northern China. Moreover, the 10-year system thermal performance and efficiency are evaluated when coupled with a ground source heat pump (GSHP), and compared with the two deep borehole heat exchanger (2-DBHE) array system that has the same total borehole length as the EUBHE system. Results show that GSHP-coupled EUBHE system is more efficient than the 2-DBHE array system, as it consumes 27% less electricity.

Keywords: Geothermal energy; Building heating; Enhanced U-tube borehole heat exchanger; Long-term thermal performance; Efficiency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121000392
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:169:y:2021:i:c:p:557-572

DOI: 10.1016/j.renene.2021.01.033

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:557-572