Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data
Yanting Li,
Wenbo Jiang,
Guangyao Zhang and
Lianjie Shu
Renewable Energy, 2021, vol. 171, issue C, 103-115
Abstract:
Condition monitoring and fault diagnosis for wind turbines can effectively reduce the impact of failures. However, many wind turbines cannot establish fault diagnosis models due to insufficient data. The operational data of similar wind turbines usually contain some universal information about failure properties. In order to make full use of these useful information, a fault diagnosis method based on parameter-based transfer learning and convolutional autoencoder (CAE) for wind turbines with small-scale data is proposed in this paper. The proposed method can transfer knowledge from similar wind turbines to the target wind turbine. The performance of the proposed method is analyzed and compared to other transfer/non-transfer methods. The comparison results show that the proposed method has advantages in diagnosing faults for wind turbines with small-scale data.
Keywords: Wind turbine; Fault diagnosis; Transfer learning; Convolutional autoencoder; Small-scale data (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121001567
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:171:y:2021:i:c:p:103-115
DOI: 10.1016/j.renene.2021.01.143
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().