Investigation of the horizontally-butted borehole heat exchanger based on a semi-analytical method considering groundwater seepage and geothermal gradient
G.S. Jia,
Z.D. Ma,
Z.H. Xia,
J.W. Wang,
Y.P. Zhang and
L.W. Jin
Renewable Energy, 2021, vol. 171, issue C, 447-461
Abstract:
The horizontally-butted borehole heat exchanger (BHE) can be used to extract heat efficiently from medium-deep strata, where the groundwater seepage and undisturbed geothermal gradient are critical influence factors. In the application, it is an important and fundamental work to predict the BHE performance for high efficiency geothermal energy utilization. In order to solve its outlet temperature and heat exchange rate, this study develops a semi-analytical solution based on an adjustable multi-layer model associated with the moving finite line source (MFLS) method. The predicted results of a 2505 m horizontally-butted BHE show that the insulation layer and groundwater seepage are beneficial to a better performance. When the insulation depth increases from 0 to 900 m, the outlet temperature can be elevated from 40.5 °C to 48.7 °C, with the fluid volumetric flow rate given at 15 m3·h-1. With a 240 m thick aquifer layer, the groundwater seepage leads to 0.34 °C and 5.73 kW improvements in the outlet temperature and heat exchange rate, respectively. The proposed method successfully solves the problem of predicting the large depth horizontally-butted BHE drilled through various geological formations and aquifers. It can serve as a reference for the rational design of BHE systems for utilizing effectively the geothermal energy.
Keywords: Medium-deep geothermal energy; Horizontally-butted borehole heat exchanger; Adjustable multi-layer model; Performance prediction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121003086
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:171:y:2021:i:c:p:447-461
DOI: 10.1016/j.renene.2021.02.129
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().