Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems
Gang Liu,
Chunwei Zhou,
Zhenghua Rao and
Shengming Liao
Renewable Energy, 2021, vol. 171, issue C, 492-504
Abstract:
The effects of fracture distribution on the heat extraction performance of enhanced geothermal system (EGS) are very significant. Referring to lots of EGS fracturing projects, the fractures around wellbore are denser than other regions in fracture reservoir. Therefore, it is essential to understand the link between the thermal exploitation of EGS and fracture distributions around injection wells. We built a three-dimensional thermal-hydrologic (TH) coupling model to simulate thermal energy transfer and pressure distribution in reservoir. Taking Qiabuqia geothermal field as a case study, the impacts of fracture morphology (like length, quantity, position and complexity) on heat extraction are compared. The contributions of fracture networks’ aperture and permeability are also investigated. Results indicate that denser fracture network significantly improves heat extraction performance and extends system lifetime. Longer primary fracture length around injection wells decreases mass flow rate of working fluid and elevates fluid temperature at the exhausts of production wells. The non-uniform distribution of the primary fracture has negative effects on EGS performance. More complex and connected fractures lead to fluid loss, and larger fracture aperture and permeability decrease mass flow rate at the outlet of production wells.
Keywords: Enhanced geothermal systems; Fracture network geometries around wells; Heat extraction; Pressure distribution (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121002457
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:171:y:2021:i:c:p:492-504
DOI: 10.1016/j.renene.2021.02.070
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().