Energy storage capacity vs. renewable penetration: A study for the UK
Bruno Cárdenas,
Lawrie Swinfen-Styles,
James Rouse,
Adam Hoskin,
Weiqing Xu and
S.D. Garvey
Renewable Energy, 2021, vol. 171, issue C, 849-867
Abstract:
This paper explores how the requirement for energy storage capacity will grow as the penetration of renewables increases. The UK’s electric grid is used as a case study. The paper aims to provide insight on what is the most economical solution to decarbonize the electric supply. A two-dimensional study varying the penetrations of wind and solar PV is carried out to identify the most appropriate generation mix for the country. The study is based on 9 years of demand and generation data with a 1hr resolution. It discusses the risk of underestimating the storage capacity needed, by failing to capture the inter-annual variability of renewables and analyzes the economic trade-off between over-generation (curtailment) and storage capacity. It also aims to determine the percentage of over-generation that minimizes the total cost of electricity. Results suggest that the UK could need a storage capacity of approximately 43 TWh to decarbonize its electricity supply. This figure considers a generation mix of 84% wind +16% solar PV, a roundtrip storage efficiency of 70%, and 15% of curtailment. Based on current costs of bulk energy storage technologies, this storage capacity translates into an investment of ∼£165.3 billion or approximately 7% of the country’s GDP.
Keywords: Renewable penetration; Energy storage capacity; Grid flexibility; Levelized cost of electricity; 100% renewable Electricity; Storage duration (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121003281
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:171:y:2021:i:c:p:849-867
DOI: 10.1016/j.renene.2021.02.149
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().