Innovative power-sharing model for buildings and energy communities
Gianfranco Di Lorenzo,
Sara Rotondo,
Rodolfo Araneo,
Giovanni Petrone and
Luigi Martirano
Renewable Energy, 2021, vol. 172, issue C, 1087-1102
Abstract:
The paper proposes an innovative power-sharing model, i.e., a power-system architecture for aggregation of users able to share the power produced by common generators and energy services. The model is suitable for both multi-tenant buildings and groups of multiple buildings and it is applicable for both existing and new buildings. It is scalable for larger systems and suitable for an easier integration with storage systems. The novel principle of the model is that the energy produced by common generators can be shared among the end-users in a unidirectional way, so that each user remains passive towards the distributor, except a single active user that assumes the role of balance node. This key feature allows for easily implementing the model in all the residential and tertiary multi-units buildings in full compliance with national regulations, with the adoption of power sharing contracts as well. This paper discusses the feasibility of the model through a dynamic Matlab/Simulink model, which is used to show its effectiveness in several case studies. The significance of this work consists of approaching the energy sharing in buildings with a completely new strategy, based on an innovative system architecture that can be effectively implemented.
Keywords: Energy communities; Nearly zero energy buildings; Power sharing model; Power sharing contracts; Renewable energy sources; Demand response programs (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121004195
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:172:y:2021:i:c:p:1087-1102
DOI: 10.1016/j.renene.2021.03.063
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().