EconPapers    
Economics at your fingertips  
 

Deep learning neural networks for short-term photovoltaic power forecasting

A. Mellit, A. Massi Pavan and V. Lughi

Renewable Energy, 2021, vol. 172, issue C, 276-288

Abstract: Accurate short-term forecasting of photovoltaic (PV) power is indispensable for controlling and designing smart energy management systems for microgrids. In this paper, different kinds of deep learning neural networks (DLNN) for short-term output PV power forecasting have been developed and compared: Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Gated Recurrent Unit (GRU), Bidirectional GRU (BiGRU), One-Dimension Convolutional Neural Network (CNN1D), as well as other hybrid configurations such as CNN1D-LSTM and CNN1D-GRU. A database of the PV power produced by the microgrid installed at the University of Trieste (Italy) is used to train and comparatively test the neural networks. The performance has been evaluated over four different time horizons (1 min, 5 min, 30 min and 60 min), for one-Step and multi-step ahead. The results show that the investigated DLNNs provide very good accuracy, particularly in the case of 1 min time horizon with one-step ahead (correlation coefficient is close to 1), while for the case of multi-step ahead (up to 8 steps ahead) the results are found to be acceptable (correlation coefficient ranges between 96.9% and 98%).

Keywords: Microgrid; Photovoltaic power; Forecasting; Short-term; One-step; Multi-step; Deep neural networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121003475
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:172:y:2021:i:c:p:276-288

DOI: 10.1016/j.renene.2021.02.166

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:276-288