Experimental and analytical investigation on hydrodynamic performance of the comb-type breakwater-wave energy converter system with a flange
Xuanlie Zhao,
Yang Zhang,
Mingwei Li and
Lars Johanning
Renewable Energy, 2021, vol. 172, issue C, 392-407
Abstract:
In this paper, the hydrodynamic performance of the comb-type breakwater-wave energy converter (CTB-WEC) system with a flange was investigated. Based on the linear potential flow theory, a semi-analytical model for wave interaction with the CTB-WEC system equipped with the flange was developed using matching eigenfunction method. In particular, Chebyshev polynomial was adopted to handle the singularity of velocity at the flange edge. Successful validation of the semi-analytical model was achieved by theoretical examination and comparing with the experimental data. The influence of wave resonance behavior in the confined water region (surrounded by caissons and the flange) was emphasized. It was found that: 1) the wave resonance behavior in the confined water region is modified due to the presence of the flange; 2) the hydrodynamic efficiency and wave attenuation performance of the CTB-WEC system is improved by properly configuring the flange; 3) the presence of piston and sloshing mode wave resonance in the gap between the WEC device and the flange led to the increment of hydrodynamic efficiency.
Keywords: Comb-type breakwater; Wave energy converter; Wave power extraction; Hydrodynamic efficiency; Wave attenuation performance; Wave resonance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121003177
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:172:y:2021:i:c:p:392-407
DOI: 10.1016/j.renene.2021.02.138
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().