EconPapers    
Economics at your fingertips  
 

Thermoelectric generation in bifurcating channels and efficient modeling by using hybrid CFD and artificial neural networks

Fatih Selimefendigil and Hakan F. Öztop

Renewable Energy, 2021, vol. 172, issue C, 582-598

Abstract: Thermoelectric power generation within TEG mounted branching channels is considered with finite element method. In the heat transfer fluid of bifurcating channels, nanodiamond + Fe3O4 binary particles are used for further system performance improvement. It was observed that when compared to non-bifurcating channels, TEG power will be reduced with the use of branching channels while branching location also affects the interface temperature variations. At (Re1, Re2)=(1000, 200), TEG power is reduced 34.7% when both channels are branching while it is 9.9% for only upper channel branching case as compared to non-branching channel case. Up to 18% variation of power is obtained when location of the upper branching channel varies. Highest powers are achieved when both channels are filled with hybrid nanofluid while at (Re1,Re2)=(1000,200) TEG power rises by about 33% and 15.5% with nanofluid in both channels and with nanofluid in only one channel cases when compared to fluid in both channel configuration. The computational cost of electric potential and power generation in TEG device is drastically reduced from 6 hours with fully coupled high fidelity CFD to 3 minutes by using hybrid CFD and artificial neural networks. The proposed approach will very helpful in the efficient design and optimization of TEG installed renewable energy systems.

Keywords: Bifurcating channels; Thermoelectric conversion; Numerical simulation; Nanofluid; Finite element method; Hybrid ANN (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812100402X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:172:y:2021:i:c:p:582-598

DOI: 10.1016/j.renene.2021.03.046

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:582-598