NiCo alloy decorated on porous N-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane
Liqing Zhao,
Qinghe Wei,
Lili Zhang,
Yafei Zhao and
Bing Zhang
Renewable Energy, 2021, vol. 173, issue C, 273-282
Abstract:
Hydrogen release from catalytic hydrolysis of solid-state ammonia borane (AB) with efficient catalysts is recognized as a safe and compelling strategy to satisfy the ever-increasing demand for clean energy. As a result, exploring extraordinary efficient and inexpensive catalysts for hydrogen generation from AB is urgently desired for practical application. Herein, with the help of bimetallic zeolitic imidazole frameworks (ZnCo-ZIF) template strategy, we successfully decorate non-noble NiCo alloy nanoparticles on ZnCo-ZIF derived porous nitrogen-doped carbon (NC) as a high-efficiency catalyst (NiCo-NC) for hydrogen generation from hydrolysis of AB. Befitting from the abundance of nitrogen in porous carbon, the powerful synergistic effect between Ni and Co and the synergistic effect between the metallic alloy and the supporting substrate, the as-prepared NiCo-NC nano-catalyst displays distinguished catalytic performance with a high total turnover frequency (TOF) of 35.2 molH2 molmetal-1 min-1in 0.6 M NaOH medium at 298 K. Besides, this catalyst also exhibits good stability and magnetic separability. This work could provide a new insight for the construction of other bimetallic alloy anchoring on porous N-doped carbon carrier for further applications.
Keywords: Non-noble metal; Porous N-Doped carbon; Hydrogen evolution; Ammonia borane; Catalytic hydrolysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121004560
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:173:y:2021:i:c:p:273-282
DOI: 10.1016/j.renene.2021.03.100
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().