Wind load and structural analysis for standalone solar parabolic trough collector
Natraj,,
B.N. Rao and
K.S. Reddy
Renewable Energy, 2021, vol. 173, issue C, 688-703
Abstract:
Solar energy is one of the emerging technologies and the use of concentrating power technology is increasing in solar power plants. Parabolic trough collector is a concentrating solar power technology that is situated in the open terrain and subjected to wind loads. The structural stability of these devices under such loads determines the ability to accurately concentrate the rays at the absorber tube, which affects the overall optical and thermal efficiencies. A detailed numerical analysis is carried out at different wind loads and design conditions. It is observed that for a change in velocity from 5 m/s to 25 m/s, slope deviations increase from 1.21 mrad to 3.11 mrad at the surface of the reflector exceeding the shape quality of the mirror panels. Higher yaw angles and pitch angles of 60° and 120° are observed to be decisive in the design of collectors. Roof-mounted collectors experience a 40% higher drag force than ground-mounted collectors at a 0° pitch angle. For the Aluminium trough, the slope deviation at the surface of the reflector is higher by 4.62% than glass. The study will be helpful for engineers and scientists in the design of the parabolic trough collectors.
Keywords: Solar energy; Wind analysis; Slope deviation; Parabolic trough collector (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812100519X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:173:y:2021:i:c:p:688-703
DOI: 10.1016/j.renene.2021.04.007
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().