Pyrolysis and gasification kinetic behavior of mango seed shells using TG-FTIR-GC–MS system under N2 and CO2 atmospheres
Samy Yousef,
Justas Eimontas,
Nerijus Striūgas and
Mohammed Ali Abdelnaby
Renewable Energy, 2021, vol. 173, issue C, 733-749
Abstract:
Mango waste is one of the most promising sources of renewable energy, especially as this waste represents 40% of the weight of mango fruit and contains a large amount of fat and cellulose that can contribute to converting it into energy products using pyrolysis and gasification process. Within this context, this research aims to investigate pyrolysis and gasification kinetic behavior of mango seed shells (MSS) using TG-FTIR-GC–MS system. The experiments were started by analyzing the composition of different types of Egyptian MSS, then their pyrolysis characteristics and chemical decomposition in N2 and CO2 atmospheres using TG-FTIR system upto 900 °C at heating rates in the range 5–30 °C/min were studied. The GC/MS system was employed to determine the formulated volatile products at the maximum decomposition temperatures (343–346 °C for N2 and 334–340 °C for CO2). Afterwards, the model-free/model-fitting methods, including Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa, and Friedman, and Distributed Activation Energy Model (DAEM) were used to estimate the kinetic parameters of pyrolysis of MSS in both atmospheres. Finally, chars derived from pyrolysis were exposed to CO2 gasification process, followed by studying of their kinetic behavior in the modified random pore model (MRPM). The results showed that the decomposed MSS were saturated with a huge amount of volatile products, particularly Carbon dioxide and Ethylene oxide (99.27% in CO2 and 20.77% in N2), while Acetic acid, Propanone, Hexasiloxane, Glycidol, Ethanedial, Ethylene oxide, Formic acid, etc. were the main compounds in case of N2. Meanwhile, the studies of kinetics of pyrolysis showed that the average activation energies were estimated in the range of 231–262 kJ/mol (N2) and 259–333 kJ/mol (CO2). Based on that, pyrolysis and gasification can be adapted as promising technologies to valorize MSS and utilize them as a new sustainable source for renewable energy.
Keywords: Mango waste; Pyrolysis; Gasification; Kinetic modeling; TG-FTIR and Py-GC/MS system (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121005462
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:173:y:2021:i:c:p:733-749
DOI: 10.1016/j.renene.2021.04.034
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().