EconPapers    
Economics at your fingertips  
 

Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas

Junxia Jiang, Xiaoqing Gao, Qingquan Lv, Zhenchao Li and Peidu Li

Renewable Energy, 2021, vol. 174, issue C, 157-169

Abstract: Rapid progress of solar photovoltaic (PV) technology has caused growing interest in understanding interactions between large scale PV plants and near-surface atmosphere. However few attempts have been made to quantify the impact of PV modules on surface radiative forcing and energy partitioning process. Here, this issue is explored experimentally and analytically in the two adjacent sites located at the PV plant and the natural barren field respectively in Wujiaqu in Xinjiang of China. The results showed that the physical effect of PV panels is not symmetrical in the whole day. During the daytime, compared with the reference site, net shortwave radiative forcing increases 8%, a warming effect on the integrated underlying surface (0.1 K) and a cooling effect (∼-2.6 K) on the ground surface were found in the PV plant. 9.2% of the net radiation (NR) was converted into electric energy (PE), sensible heat flux (H) increased by 30.6% hence resulted in the convection heating effects of 0.64 K and 0.32 K on the near-surface air temperature at the height of 2 m and 10 m respectively, while latent heat flux (LE) and ground surface heat flux (GS) decreased by 49% and 3% respectively related to the reference site. At night, PV panels produce a cooling effect of −0.2 K and −2.3 K on the ground and integrated underlying surface respectively, and less GS is released in the PV plant which contribute to the cooling effects of −0.24 K and −0.08 K on the air temperature at the height of 2 m and 10 m respectively related to the reference site. In the whole day, in the PV plant, H increased by 27.6%, LE and GS decreased by 47.4% and 6.7% respectively, air temperature increased by 0.16 K and 0.1 K at 2 m and 10 m respectively.

Keywords: Large-scale photovoltaic plant; Land surface process; Surface radiation and energy partitioning; In situ observations; Barren area (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121005127
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:174:y:2021:i:c:p:157-169

DOI: 10.1016/j.renene.2021.03.148

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:157-169