Comparative analysis of methods for cloud segmentation in ground-based infrared images
Guillermo Terrén-Serrano and
Manel Martínez-Ramón
Renewable Energy, 2021, vol. 175, issue C, 1025-1040
Abstract:
The increasing penetration of photovoltaic systems in the power grid makes it vulnerable to cloud shadow projection. Real-time cloud segmentation in ground-based infrared images is important to reduce the noise in intra-hour global solar irradiance forecasting. We present a comparison between discriminative and generative models for cloud segmentation. The performances of supervised and unsupervised learning methods in cloud segmentation are evaluated. The discriminative models are solved in the primal formulation to make them feasible in real-time applications. The performances are compared using the j-statistic. Infrared image preprocessing to remove stationary artifacts increases the overall performance in the analyzed methods. The inclusion of features from neighboring pixels in the feature vectors leads to a performance improvement in some of the cases. Markov Random Fields achieve the best performance in both unsupervised and supervised generative models. Discriminative models solved in the primal yield a dramatically lower computing time along with high performance in the segmentation. Generative and discriminative models are comparable when preprocessing is applied to the infrared images.
Keywords: Cloud segmentation; Machine learning; Markov random field; Sky imaging; Solar forecasting (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121006674
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:175:y:2021:i:c:p:1025-1040
DOI: 10.1016/j.renene.2021.04.141
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().