Multiscale power fluctuation evaluation of a hydro-wind-photovoltaic system
Hualin Xiong,
Beibei Xu,
Kimleng Kheav,
Xingqi Luo,
Xingjin Zhang,
Edoardo Patelli,
Pengcheng Guo and
Diyi Chen
Renewable Energy, 2021, vol. 175, issue C, 153-166
Abstract:
The hybrid energy systems are required to operate stably in different time scales. Previous studies on the stability are carried out under the unrealistic assumption of discontinuous time scales. Therefore, a second time scale model for the hybrid energy systems is presented in this study. To overcome the possible uncertainty caused by the discontinuous time scale assumption, a new method is introduced to analyze power fluctuations for the hybrid power system considering the hydroelectric power station (HPS) and PV-wind complementarity. Compared with traditional statistics, the proposed three indices, discussed in terms of variation frequency, have the ability to show the stability and complementarity characteristics of the hybrid system with the time scale varying from second to hour, The results show that the volatility of wind power and photoelectric increase with the increase of time scale. In (100, 102) seconds, the HPS could not compensate for as they do not meet flexibility demand in that particular frequency domain, and hydro-electric power is able to compensate wind and PV power sources well when the time scale is over 102 s. The obtained stability evolution law has important reference significance for the subsequent studies on the stability of hybrid energy systems.
Keywords: Hybrid energy system; Continuous time scale; Stability evaluation; Hydropower complementation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121006157
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:175:y:2021:i:c:p:153-166
DOI: 10.1016/j.renene.2021.04.095
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().