Microbial lipid accumulation through bioremediation of palm oil mill effluent using a yeast-bacteria co-culture
Ahasanul Karim,
M. Amirul Islam,
Zaied Bin Khalid,
Abu Yousuf,
Md. Maksudur Rahman Khan and
Che Ku Mohammad Faizal
Renewable Energy, 2021, vol. 176, issue C, 106-114
Abstract:
Co-cultures of different microorganisms are considered promising inocula for treating palm oil mill effluents (POME) and producing value-added bio-products (e.g., biofuels and fatty acid-derived materials). However, the efficiency of yeast-bacteria co-culture for microbial lipid production through bioremediation of wastewater remains a bottleneck. In this study, the performance of a co-culture for lipid accumulation through POME bioremediation was investigated using a yeast (Lipomyces starkeyi) and a bacterium (Bacillus cereus). A maximum biomass of 8.89 ± 0.33 g/L and lipid production of 2.27 ± 0.10 g/L were achieved by the co-culture inoculum, which were substantially higher than those of the monocultures. Besides, the co-culture inoculum attained a maximum chemical oxygen demand (COD) removal of 83.66 ± 1.9%, while the individual cultures of B. cereus and L. starkeyi obtained 74.35 ± 1.7% and 69.01 ± 2.3%, respectively. The bioremediation efficiency was confirmed by the seed germination index (GI) of Vigna radiata (Mung bean). It was observed that the co-culture inoculum had a higher GI compared to the untreated POME and even the monoculture-treated POME. We argue that the symbiotic association of a yeast-bacteria co-culture in POME could be an attractive approach for achieving maximum biomass as well as lipid production and simultaneous bioremediation of POME.
Keywords: Palm oil mill effluent; Lipid accumulation; Bioremediation; Co-culture; Bacillus cereus; Lipomyces starkeyi (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812100731X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:176:y:2021:i:c:p:106-114
DOI: 10.1016/j.renene.2021.05.055
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().