EconPapers    
Economics at your fingertips  
 

Production of syngas by CO2 reduction through Reverse Water–Gas Shift (RWGS) over catalytically-active molybdenum-based carbide, nitride and composite nanowires

Venkata D.B.C. Dasireddy, Damjan Vengust, Blaž Likozar, Janez Kovač and Aleš Mrzel

Renewable Energy, 2021, vol. 176, issue C, 251-261

Abstract: Transition metal carbides and nitrides with large surface areas are attractive for various catalytic reactions. The synthesis of molybdenum carbide, molybdenum nitride and nanocomposite mixed-phase nanowires with the preserved structural morphology of two different precursor reactant materials by heating in diverse gas mixtures is reported herein. Prepared heterogeneous catalysts were characterized using diffraction, physisorption, chemisorption and microscopic techniques. With XRD and interfacial elemental analysis, performed by a transmission electron microscope, the composition of starting intermediate moieties and products was determined. Ordered grain structure appeared almost independent of applied gaseous compounds and typical domain sizes were comparable. The conversions of CO2 during the reverse water–gas shift (RWGS) were calculated for all measured samples in a wide operation range. Composite Mo2C/Mo2N showed the highest conversion higher than the pure Mo2C with similar site amount and especially larger than Mo2N, which demonstrated a low activity throughout the process. The stability of Mo2C/Mo2N wires was tested at 300 °C and they exhibited an unchanged time-on-stream reactivity over a long period of time (>24 h), withstanding deactivation. In addition, the selectivity towards CO was maintained at around 99%. The comparison of catalyst characterisation before and after RWGS reaction show that there is no major difference in the physical and chemical characteristics of the materials further validate the use of the present catalysts.

Keywords: Carbon dioxide conversion; Reverse water–gas shift reaction (RWGS); Molybdenum carbide (Mo2C) nanowires; Molybdenum nitride (Mo2N) nanowires; Non-noble metal catalyst material design (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121007278
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:176:y:2021:i:c:p:251-261

DOI: 10.1016/j.renene.2021.05.051

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:176:y:2021:i:c:p:251-261