Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material
Madhankumar S,
Karthickeyan Viswanathan and
Wei Wu
Renewable Energy, 2021, vol. 176, issue C, 280-294
Abstract:
Solar energy is a widely used green energy resource that is used for drying processes. Through this assessment, the performance of an Indirect Solar Dryer (ISD) with three different cases, namely solar collector - without Thermal Energy Storage (TES), with TES unit having Phase Change Material (PCM) and with TES having fins inserted PCM have been experimentally analyzed during spring and summer seasons for drying Momordica charantia. Totally six experiments were undertaken to compare temperature, drying kinetics, and energy analyses. The initial moisture level of 2 kg of specimen decreased from 1.84 kg of water (92% w. b) to 0.24 kg of water (12% w. b) in 10.5 h utilizing ISD with TES having fins inserted PCM (Test 6). The maximum thermal efficiency achieved about 19.41% on Test 6. Exergy efficiency increased from 8.66% to 79.02% at Test 6. Environmental impacts assessment has revealed that the Energy Payback Time for the ISD was 1.42 years. The CO2 emission, mitigation, and carbon credit gained (Test 6) are 23.88 kg/year, 20.13 tons, and $100.642 to $402.569 for the 35 years’ intended lifespan. The assessment report showed that the device established was a potentially effective commercial drying technique, both in energy utilization and environmental sustainability.
Keywords: Indirect solar dryer; Phase change material; Momordica charantia; Energy analysis; Exergy analysis; Environmental analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121007679
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:176:y:2021:i:c:p:280-294
DOI: 10.1016/j.renene.2021.05.085
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().