EconPapers    
Economics at your fingertips  
 

Potential of Bayesian additive regression trees for predicting daily global and diffuse solar radiation in arid and humid areas

Wei Wu, Xiaoping Tang, Jiake Lv, Chao Yang and Hongbin Liu

Renewable Energy, 2021, vol. 177, issue C, 148-163

Abstract: This study aims to evaluate the potential of Bayesian additive regression trees (BART) for predicting global and diffuse solar radiation. Long-term daily weather data were collected at four stations in arid and humid areas. Models with different input combinations were created. The default parameters within R language package of BART were used. Model accuracy was assessed with Pearson correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE), relative root mean square error (RRMSE), and Nash-Sutcliffe efficiency coefficient (NSE). Taylor diagram was applied to illustrate model performance. On average, the model with sunshine duration, theoretical sunshine duration, mean temperature, maximum temperature, minimum temperature, relative humidity, and rainfall performed best for predicting global solar radiation, with mean R of 0.973, RMSE of 1.685 MJ/m2d, NSE of 0.944, RRMSE of 0.124, and MAE of 1.265 MJ/m2d. The model with sunshine duration, theoretical sunshine duration, global solar radiation, extraterrestrial solar radiation, and day of year outperformed others for predicting diffuse solar radiation, with mean R of 0.912, RMSE of 1.291 MJ/m2d, NSE of 0.827, RRMSE of 0.214, and MAE of 0.933 MJ/m2d. The results showed that BART was a suitable method for predicting global and diffuse solar radiation using climatic variables.

Keywords: Sunshine duration; Seasonal variation; Input combination; Machine learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121007813
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:177:y:2021:i:c:p:148-163

DOI: 10.1016/j.renene.2021.05.099

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:148-163