Estimation of kinematic viscosity of biodiesel-diesel blends: Comparison among accuracy of intelligent and empirical paradigms
Salah I. Yahya and
Babak Aghel
Renewable Energy, 2021, vol. 177, issue C, 318-326
Abstract:
Recently, Biodiesels are found high popularity as environmentally friendly and renewable fuels. Suitable combustion, appropriate atomization process, high flash point, and proper cetane number approved biodiesels as potential alternative for petroleum-based diesel fuels. Since, characteristics of biodiesels as well as biodiesel-diesel blends are directly related to their viscosity, an accurate approach is required for prediction of this important transport property. Therefore, this study tries to compare the accuracy of different empirical and intelligent paradigms for estimation of biodiesel-diesel blends. For this regard, the best topology of adaptive neuro-fuzzy inference systems (ANFIS) and least squares support vector machines (LSSVM) are determined at first, and then their predictive performances are compared with five empirical correlations in literatures. Combination of statistical study and ranking analysis justified that the LSSVM with polynomial kernel is the most accurate approach for the considered matter. The designed model estimated kinematic viscosity of 636 biodiesel-diesel blends with an excellent AARD = 0.754%, MAE = 0.03, RAE = 1.98%, RRSE = 2.3%, MSE = 0.003, RMSE = 0.05, and R2-value of 0.9997.
Keywords: Sustainable fuel; Biodiesel-diesel blends; Kinematic viscosity; Comparison study; Smart modeling; Empirical correlations (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121007746
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:177:y:2021:i:c:p:318-326
DOI: 10.1016/j.renene.2021.05.092
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().