EconPapers    
Economics at your fingertips  
 

Thermodynamic and thermoeconomic analysis of a novel power and hydrogen cogeneration cycle based on solid SOFC

Elahe Soleymani, Saeed Ghavami Gargari and Hadi Ghaebi

Renewable Energy, 2021, vol. 177, issue C, 495-518

Abstract: To enhance the performance of the thermodynamic systems, reduce the pollutants emission to the environment, and decline the fuel utilization, waste heat recovery methods are in high interest. In this paper, a new configuration of an integrated solid oxide fuel cell and gas turbine combined with a biogas reforming cycle is presented for the cogeneration of power and hydrogen. The thermal energy discharged from the SOFC-GT system is used to supply the energy required for the reforming reaction in the biogas reforming cycle for hydrogen production. Comprehensive thermodynamic and thermoeconomic modeling has been performed using EES software. Also, a parametric study has been performed to demonstrate the effect of different parameters on the main performance metrics of the devised system. The results revealed that the energy efficiency and exergy efficiency of the proposed combined system have increased compared to the SOFC-GT system by 23.31% and 28.19%, respectively. The net output power and hydrogen production rate are obtained by 2726 kW and 0.07453 kg/s, respectively. From the exergy viewpoint, the afterburner causes a considerable amount of exergy destruction for the system by approximately 26% of the total exergy destruction rate. Besides, the sensitivity analysis revealed that by increasing the inlet temperature of the fuel cell, the cell voltage reaches a maximum value at a temperature of 679 K and then decreases. Moreover, the total exergy destruction rate and SUCP of the cogeneration system is calculated by 1532 kW and 9400 $/GJ, respectively.

Keywords: Cogeneration system; Solid oxide fuel cell; Steam reforming; Thermodynamic; Thermoeconomic (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121007862
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:177:y:2021:i:c:p:495-518

DOI: 10.1016/j.renene.2021.05.103

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:495-518