An efficient and low-cost DMPPT approach for photovoltaic submodule based on multi-port DC converter
Tao Zhang,
Jiahui Jiang and
Daolian Chen
Renewable Energy, 2021, vol. 178, issue C, 1144-1155
Abstract:
Solar energy is one of the most promising energy types, but photovoltaic (PV) mismatches have several negative effects. Finding an efficient and low-cost method to reduce or eliminate the power loss caused by the mismatch in PV power generation systems is necessary. In this paper, we propose a PV submodule-distributed maximum power point tracking (DMPPT) scheme based on a multi-port DC converter. In-depth analysis and research are performed on the PV model and mismatch characteristics, the PV module voltage equalization (VE) strategy, and implementation with the multi-port buck–boost converter. We discuss the trade-off between true DMPPT and VE on control overhead and tracking accuracy, and a detailed derivation is created to illustrate the differences between them. The VE can reduce the cost and complexity of the system at the expense of a small PV energy capture. The proposed implementation reduces the number of semiconductor components and current sensors, which is conducive to the integrated design of the hardware. A prototype based on a multi-port buck–boost converter for a 36 V/200 W PV module was designed and built. The feasibility and progress of the proposed scheme were verified through experiments.
Keywords: Photovoltaic power generation; Distributed maximum power point tracking; Differential power processing; Multi-port DC converter; Voltage equalization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121010016
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:178:y:2021:i:c:p:1144-1155
DOI: 10.1016/j.renene.2021.06.134
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().