EconPapers    
Economics at your fingertips  
 

Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa

Moshood Akanni Alao, Olawale M. Popoola and Temitope Rapheal Ayodele

Renewable Energy, 2021, vol. 178, issue C, 162-183

Abstract: Waste-to-energy has evolved as a promising solution for sustainable power generation as well and waste management. To effectively harness the potential of the waste-to-energy technologies in a sustainable manner, an optimal choice among the diverse technologies is highly essential. The multi-dimensional nature of waste management makes selection of appropriate waste-to-energy option a complex problem. Therefore, a simple and computationally efficient decision tool is required to aid decision making. In this paper, a novel hybrid multi-criteria method based on IDOCRIW and TOPSIS are proposed for optimal selection of the appropriate waste-to-energy technologies for distributed generation. Fourteen criteria were considered spanning through technical, economic, environmental and social factors. Five technologies such as anaerobic digestion, landfill gas recovery, incineration, pyrolysis and gasification were selected due to their level of maturity and availability. The proposed model was tested using the City of Johannesburg, South Africa as a case study. The overall results indicated that anaerobic digestion is the most attractive technology with a relative closeness of 0.9724 to the ideal solution while incineration is ranked worst with a closeness of 0.6474 to the ideal solution. The result also revealed that the integration of anaerobic digestion and gasification could be more promising in terms of waste management. It could also be a good candidate for distributed generation in a microgrid application by serving as a local power generator when integrated to waste management systems of the City of Johannesburg.

Keywords: Waste-to-Energy; Entropy; Criteria impact loss; Anaerobic digestion; Gasification (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121008971
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:178:y:2021:i:c:p:162-183

DOI: 10.1016/j.renene.2021.06.031

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:162-183