EconPapers    
Economics at your fingertips  
 

An innovative hybrid solar preheating intercooled gas turbine using parabolic trough collectors

Yousef N. Dabwan, Gang Pei, Trevor Hocksun Kwan and Bin Zhao

Renewable Energy, 2021, vol. 179, issue C, 1009-1026

Abstract: In this study, a new hybrid solar preheating intercooled gas turbine (SP-IcGT), is presented, in which a parabolic trough solar technology is used to preheat the compressed air before entering the combustor. The performance of the new hybrid gas turbine was evaluated and compared with the conventional hybrid solar preheating gas turbine (SP-GT). Several performance indicators were used in the analysis under Guangzhou (China) weather data. It is observed that the SP-IcGT is superior to the SP-GT system as it can boost the fuel-based efficiency by 19.35% versus 0.26% for the SP-GT system. In addition, the SP-IcGT has a much lower specific fuel consumption (about 7017 kJ/kWh) compared with the 10362 kJ/kWh for SP-GT. The highest fuel-based efficiency of 51.4% is obtained for the SP-IcGT with 47.4% improvement over the SP-GT, which exhibits a levelized electricity cost of 4.58 US/kWh. Meanwhile, fuel consumption and greenhouse gas emissions can be reduced greatly by integrating solar energy with the intercooled gas turbine. The SP-IcGT is more economical than applying carbon capture to the equivalent conventional gas turbine plant combined while achieving the same reduction of CO2 emissions. Overall, the SP-IcGT is an attractive system under different climates.

Keywords: Intercooled gas turbine; Gas turbine; Hybrid solar gas turbine; Parabolic trough collector; Solar energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121010624
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:1009-1026

DOI: 10.1016/j.renene.2021.07.057

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1009-1026