Wind turbine blade icing detection with multi-model collaborative monitoring method
Peng Guo and
David Infield
Renewable Energy, 2021, vol. 179, issue C, 1098-1105
Abstract:
Blade ice accretion endangers the safety of wind turbines located at high altitudes with a humid climate, particularly during winter. Timely detection of ice accretion facilitates appropriate regulation of the wind turbine, including shut down, to ensure safety. This paper provides a detailed analysis of the impact of ice accretion on wind turbine performance and relevant operational parameters. Rotor speed, output power and ambient temperature are selected as variables that can facilitate the detection of blade ice accretion. The XGBoost method is used to accurately construct normal behavior models for output power and rotor speed respectively, and the model errors (Mean Absolute Percentage Error, MAPE) can be as low as 0.53%. A Sequential Probability Ratio Test (SPRT) is introduced to analyze the model prediction residuals and thus identify any abnormal changes to output power and rotor speed. If significant changes are detected when the ambient temperature is below zero, an ice accretion alarm is triggered. Using real blade ice accretion data, a case study demonstrates that the proposed blade ice detection method can give blace icing alarm 5 h in advance and offers sufficient time to gurantte the safety of wind turbine.
Keywords: Wind turbine; Blade icing detection; XGBoost; Condition monitoring (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121011253
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:1098-1105
DOI: 10.1016/j.renene.2021.07.120
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().