EconPapers    
Economics at your fingertips  
 

A comparative study of fully coupled and de-coupled methods on dynamic behaviour of floating wind turbine drivetrains

Shuaishuai Wang, Torgeir Moan and Amir R. Nejad

Renewable Energy, 2021, vol. 179, issue C, 1618-1635

Abstract: Traditionally, drivetrain responses are obtained by a de-coupled analysis, which first involves a global analysis with a simplified representation of the drivetrain, followed by a detailed analysis of the drivetrain with the input of global response on the drivetrain interface. As the wind turbine size increases, it is questionable whether this de-coupled analysis method yields sufficiently accurate results. To address this question, a comparative study of the drivetrain dynamic behaviour obtained by a fully coupled method and a de-coupled one, is conducted and reported in this paper. A 10-MW fully coupled aero-hydro-servo-elastic floating wind turbine dynamic model is developed, including a high-fidelity drivetrain. The developed fully coupled model is assessed to be reasonable via the comparison of drivetrain first-order natural frequency and code-to-code comparisons in terms of global responses between two simulation tools Simpack and Fast. Resonance analysis of the 10-MW drivetrain in the fully coupled model is performed, with focus on rotor-drivetrain-bedplate-tower coupled modes in the low frequency range. Time domain simulations of the drivetrain in the fully coupled and the de-coupled models are carried out in different environmental conditions. One-hour fatigue damage of drivetrain gears and bearings in the fully coupled and de-coupled models are compared. Effect of nacelle motion on drivetrain fatigue damage in the de-coupled analysis is discussed. The results are presented to demonstrate whether the de-coupled method could be confidently used for drivetrain dynamic analysis. This study provides a basis for drivetrain design and dynamic analysis in floating wind turbines.

Keywords: Floating wind turbine; Drivetrain; Fully coupled method; De-coupled method; Fatigue damage; Comparative study (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121011472
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:1618-1635

DOI: 10.1016/j.renene.2021.07.136

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1618-1635