An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator
Atazaz Hassan,
Chen Quanfang,
Sajid Abbas,
Wu Lu and
Luo Youming
Renewable Energy, 2021, vol. 179, issue C, 1849-1864
Abstract:
The receiver is crucial in converting concentrated solar radiation to thermal energy in a solar parabolic dish collector. The most popular type of receiver is a cavity receiver, which reduces heat loss from the body. In this paper, an experimental investigation of the energy, exergy, and optical performance of two cavity-type receivers for a solar parabolic dish concentrator was carried out. The cylindrical and conical cavity tube receivers were designed and tested in the temperature range of 35 °C–190 °C, with water as the working fluid and a flow rate of 0.83 L per minute. The results showed that the conical cavity tube receiver is the optimum design, while the cylindrical shape is the second choice. The conical cavity tube design achieved 62% average thermal efficiency, 11% exergy efficiency, while the maximum optical efficiency was 82% under average solar irradiation of 865 W/m2. The overall heat loss coefficients of cylindrical and conical cavity receivers from the stagnation measure were 137 W/m2 and 125 W/m2, respectively. The maximum and average surface temperatures for both cylindrical and conical cavity tube receivers were reached at 140 °C, 115 °C and 155 °C, 125 °C, respectively. The simulation study was conducted using COMSOL Multiphysics software to investigate the temperature distribution of the receivers. The proposed lightweight conical cavity tube receiver was found to have a high capacity to be used with a solar parabolic dish-style concentrating device to operate heating water applications.
Keywords: Solar parabolic dish concentrator; Thermal efficiency; Optical efficiency; Cylindrical and conical cavity tube receivers; Heat loss; COMSOL Multiphysics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121011563
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:1849-1864
DOI: 10.1016/j.renene.2021.07.145
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().