EconPapers    
Economics at your fingertips  
 

Feature extraction of meteorological factors for wind power prediction based on variable weight combined method

Peng Lu, Lin Ye, Yongning Zhao, Binhua Dai, Ming Pei and Zhuo Li

Renewable Energy, 2021, vol. 179, issue C, 1925-1939

Abstract: To achieve a high penetration of renewable energy integration, an effective solution is to explore the interdependence between numerical weather prediction (NWP) data and historical wind power to improve prediction accuracy. This paper proposes a novel combined approach for wind power prediction. The characteristics of NWP and historical wind power data are extracted by using the feature extraction technique, the predictor is designed based on extreme learning machine (ELM) and least squares support vector machine (LSSVM) model, and then key parameters of the prediction models are optimized by improving cuckoo search (ICS) to obtain a reliable value, which is defined as the pre-combined prediction value (PPA). To obtain a reliable result, a variance strategy is developed to allocate the weights of the pre-combined prediction model to obtain the final predicted values. Four seasons dataset collected from regional wind farms in China is utilized as a benchmark experiment to evaluate the effectiveness of the proposed approach. The results of comprehensive numerical cases with different seasons show that the proposed approach, which considers multiple-error metrics, including error metrics, accuracy rate, qualification rate, and improvement percentages, achieves higher accuracy than other benchmark prediction models.

Keywords: Short-term wind power prediction; Meteorological feature extraction; Numerical weather prediction (NWP); Variance weight selection; Combined prediction approaches (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121011678
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:1925-1939

DOI: 10.1016/j.renene.2021.08.007

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1925-1939