Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms
Ali Eidi,
Reza Ghiassi,
Xiang Yang and
Mahdi Abkar
Renewable Energy, 2021, vol. 179, issue C, 2212-2223
Abstract:
Reynolds-averaged Navier-Stokes (RANS) is one of the most cost-efficient approaches to simulate wind-farm-atmosphere interactions. However, the applicability of RANS-based methods is always limited by the accuracy of turbulence closure models, which introduce various uncertainties into the models. In this study, we estimate model-form uncertainties in RANS simulations of wind farms. For this purpose, we compare different RANS models to a large-eddy simulation (LES). We find that the realizable k −ϵ model is a representative RANS model for predicting the mean velocity, the turbulence intensity, and the power losses within the wind farm. We then investigate the model-form uncertainty associated with this turbulence model by perturbing the Reynolds stress tensor. The focus is placed on perturbing the shape of the tensor represented by its eigenvalues. The results show that the perturbed RANS model successfully estimates the region bounding the LES results for quantities of interest (QoIs). We also discuss the effect of perturbation magnitude on various QoIs.
Keywords: Wind-farm wakes; Power deficit; CFD RANS; Turbulence modeling; Uncertainty quantification (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121011721
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:2212-2223
DOI: 10.1016/j.renene.2021.08.012
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().