An in-depth analysis of biogas production from locally agro-industrial by-products and residues. An Italian case
Efisio Antonio Scano,
Massimiliano Grosso,
Agata Pistis,
Gianluca Carboni and
Daniele Cocco
Renewable Energy, 2021, vol. 179, issue C, 308-318
Abstract:
The aim of this study is to evaluate the most suitable operating conditions for anaerobic co-digestion processes with high replacement rates (64% on average) of dedicated crops (silage of maize and triticale) with residual biomass, represented by a mixture of whey (scotta), pitted olive pomace, olive mill wastewater, and sheep manure. Experimental trials were first carried out at pilot plant scale and then at industrial plant scale. Univariate and multivariate statistical analysis demonstrates that almost 70% of the dedicated crops, ordinarily used in industrial scale anaerobic digestion plants, can be replaced by a mixture of residual biomass, available on the territory, without a reduction in performance. Compared to the industrial plant, the pilot plant shows much higher values of biogas production rate and specific production rates for both biogas (about 0.64–0.86 Nm3/kgVS vs 0.35 Nm3/kgVS) and methane (about 0.30–0.43 Nm3/kgVS vs 0.20 Nm3/kgVS).
Keywords: Anaerobic digestion; Agro-industrial residues; Dedicated crops; Biogas production (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121010557
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:308-318
DOI: 10.1016/j.renene.2021.07.050
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().