Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers
Yongqiang Luo,
Guozhi Xu and
Nan Cheng
Renewable Energy, 2021, vol. 179, issue C, 604-624
Abstract:
Extracting thermal energy from medium-deep ground layer for building heating is a promising means for pushing forward cleaner heating initiative. There is no available analytical model that can provide fast, accurate and effective simulation of both fluid and soil temperature field of deep borehole heat exchanger (DBHE) under complex geothermal gradient and subsurface stratifications. In this study, a stratified segmented finite line source method (SS-FLS) is proposed as an main contribution and novelty. The proposed model is validated by comparing with finite element method, model degradation example, and actual engineering project data of DBHE. The accuracy and robustness of the SS-FLS is fully checked. Then the effects of stratification on soil temperature field and fluid temperature field are investigated. It is found that the shape of temperature contour and temperature distribution have direct link with stratification as well as heat extraction rate on the heat pump side. Moreover, two critical model parameters are discussed in details which poses an important guide for both model application and system analysis.
Keywords: Deep borehole heat exchanger; Ground stratification; Geothermal gradient; Analytical model; Heat extraction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121010910
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:179:y:2021:i:c:p:604-624
DOI: 10.1016/j.renene.2021.07.086
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().