EconPapers    
Economics at your fingertips  
 

Quantifying the effects of tidal turbine array operations on the distribution of marine mammals: Implications for collision risk

Joe Onoufriou, Debbie J.F. Russell, Dave Thompson, Simon E. Moss and Gordon D. Hastie

Renewable Energy, 2021, vol. 180, issue C, 157-165

Abstract: Owing to their predictability, tidal currents are an attractive source of renewable energy. However, data on the environmental impacts, especially at array scale, are lacking. We present a spatial analysis of telemetry data, identifying the effects of the presence and operations of the world's first commercial sized tidal turbine array on the movements of an acoustically sensitive marine mammal; the harbour seal (Phoca vitulina). No significant change in at sea distribution was detected between pre and post installation of the 4 turbine array. However, seals showed overt avoidance responses during turbine operations, with a significant decrease in predicted abundance (95% CIs: −11%, −49%) within ∼2 km of the array. These results provide important information for estimating collision rates between seals and tidal turbine arrays and demonstrate an analytical framework which can be used to assess the effect of arrays on other marine animal distributions. Collision risk models used to estimate collision rate between tidal turbines and marine mammals traditionally assume some non-empirical degree of avoidance, or no avoidance. The avoidance response elicited by seals to these devices could reduce the likelihood of direct collisions, with estimated avoidance rates measured here suggesting a decrease in total number of between 0.4% and 2% per annum. Further, given sustained barrier effects were not identified, avoidance may only be occurring during the potentially dangerous periods during operations thereby not restricting movement through the site at all times. However, future environmental impact assessments and spatial planning for array deployments should consider the potential for repulsion of acoustically sensitive top-predators away from ecologically important sites.

Keywords: Environmental monitoring; Tidal stream turbines; Spatial ecology; Marine spatial planning; Mammal behaviour (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812101212X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:180:y:2021:i:c:p:157-165

DOI: 10.1016/j.renene.2021.08.052

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:157-165