Model predictive control based on deep learning for solar parabolic-trough plants
Sara Ruiz-Moreno,
José Ramón D. Frejo and
Eduardo F. Camacho
Renewable Energy, 2021, vol. 180, issue C, 193-202
Abstract:
In solar parabolic-trough plants, the use of Model Predictive Control (MPC) increases the output thermal power. However, MPC has the disadvantage of a high computational demand that hinders its application to some processes. This work proposes using artificial neural networks to approximate the optimal flow rate given by an MPC controller to decrease the computational load drastically to a 3% of the MPC computation time. The neural networks have been trained using a 30-day synthetic dataset of a collector field controlled by MPC. The use of a different number of measurements as inputs to the network has been analyzed. The results show that the neural network controllers provide practically the same mean power as the MPC controller with differences under 0.02 kW for most neural networks, less abrupt changes at the output and slight violations of the constraints. Moreover, the proposed neural networks perform well, even using a low number of sensors and predictions, decreasing the number of neural network inputs to 10% of the original size.
Keywords: Solar energy; Model predictive control; Parabolic-trough collector; Artificial intelligence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121012180
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:180:y:2021:i:c:p:193-202
DOI: 10.1016/j.renene.2021.08.058
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().