EconPapers    
Economics at your fingertips  
 

Life cycle assessment of charcoal production and electricity generation from eucalyptus in an industrial batch kiln

Marcio Montagnana Vicente Leme, Osvaldo José Venturini, Electo Eduardo Silva Lora, Wellington de Almeida, Mateus Henrique Rocha, Tomás Andrade da Cunha Dias and Oscar Almazán del Olmo

Renewable Energy, 2021, vol. 180, issue C, 232-244

Abstract: Brazilian charcoal is produced from planted eucalyptus forest wood in traditional batch reactors. The ordinary technology applied in Brazil does not use pyrolysis waste gases, which leads to the loss of 30% of wood energy and decreases air quality. This study evaluated the synchronous use of industrial batch kilns, waste gas burning, and energy recovery to produce electricity. Three scenarios were analyzed: (S1) Eucalyptus charcoal production without gas burning (Base Scenario); (S2) with gas burning; and (S3) with gas burning and electricity generation. Since a eucalyptus forest can fix carbon into its biomass through photosynthesis and finally into charcoal, S1 was able to reduce 3402.5 kg of CO2-eq per Mg of charcoal produced, and S2 reduced 6453.1 kg of CO2-eq due to waste gas methane burning. Electricity production is environmentally positive for all evaluated environmental indicators thanks to gas pollutants destruction and renewable energy generation. For S1, a ratio difference of 6.3 was found between the output of renewable energy and fossil energy input during the charcoal life cycle. For a combined production of charcoal and electricity (S3), a ratio difference of 6.9 was found. Photochemical oxidation was the main impact which can be significantly reduced by adopting gas flaring.

Keywords: Charcoal production; LCA Application; Slow pyrolysis; Gas recovery; Efficiency improvement; Environmental improvements (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121012003
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:180:y:2021:i:c:p:232-244

DOI: 10.1016/j.renene.2021.08.040

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:232-244