EconPapers    
Economics at your fingertips  
 

Non-isothermal pyrolytic kinetics of milk dust powder using thermogravimetric analysis

V. Karuppasamy Vikraman, G. Boopathi, D. Praveen Kumar, R. Mythili and P. Subramanian

Renewable Energy, 2021, vol. 180, issue C, 838-849

Abstract: Milk dust is a prominent remnant of the milk powder packaging industry. The present study reports the thermal degradation pattern and pyrolytic kinetics of milk dust powder (MDP). Thermogravimetric studies were conducted at multiple heating rates (10, 20, 30, and 40 °C min−1) and the obtained biochars were characterized by FTIR, SEM, and XRD. Kinetic analysis was performed using model-free and model-fitting methods. The activation energy obtained by Starink and Friedman methods were 228.29 and 232.46 kJ mol−1, respectively. The frequency factor was found to be in the range between 2.69 × 1010 and 4.37 × 1032 s−1 as determined using the Kissinger method. The MDP pyrolysis followed diffusion (α = 0.05 to 0.2) ensued by higher-order (α = 0.6 to 0.95) reaction mechanism as predicted by the master plots. The change in enthalpy (144.88–405.42 kJ mol−1) and Gibb's free energy (176.98 and 182.21 kJ mol−1) implied the endothermic nature and non-spontaneity of MDP pyrolysis. Whereas ΔS values were negative in the conversion range (0.05–0.3) indicating that the process was spontaneous at initial conversions. The kinetic and thermodynamic analysis results confirm the suitability of milk dust powder as a potential candidate for energy conversion through pyrolysis.

Keywords: Milk dust powder; TGA; Pyrolysis; Kinetic analysis; Thermodynamic parameters; Combined kinetics (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121012672
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:180:y:2021:i:c:p:838-849

DOI: 10.1016/j.renene.2021.08.099

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:838-849