EconPapers    
Economics at your fingertips  
 

Subsurface utilization as a heat sink for large-scale ground source heat pump: Case study in Bangkok, Thailand

Yutaro Shimada, Koji Tokimatsu, Takashi Asawa, Youhei Uchida, Akira Tomigashi and Hideaki Kurishima

Renewable Energy, 2021, vol. 180, issue C, 966-979

Abstract: Subsurface utilization in the tropical regions as a heat sink for ground source heat pumps (GSHPs) leads to thermal buildup in the long term, resulting in the decreased energy performance. However, the applicability of the GSHP in these regions has never been investigated based on the predicted heat sink temperature over a lifetime. This study aimed to evaluate the energy performance of a large-scale GSHP system in representative building models in Thailand based on operating conditions derived from a predicted 50-year heat sink temperature. The proposed system combines a GSHP and an air-source heat pump (ASHP), and, in one scenario, the GSHP also supplies hot water. The results confirm that the combined system achieves a higher efficiency than that of an ASHP system alone, and GSHP supplying hot water realizes substantial energy-saving. However, limitations on the annual GSHP operation hours are essential, resulting in low energy-saving performance for cooling dominated facilities. Further improvements are expected by mitigating the thermal interactions among each borehole heat exchanger.

Keywords: Ground source heat pump; Energy saving; Tropical region (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121012842
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:180:y:2021:i:c:p:966-979

DOI: 10.1016/j.renene.2021.08.116

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:180:y:2021:i:c:p:966-979