EconPapers    
Economics at your fingertips  
 

Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems

Adel Mellit and Soteris Kalogirou

Renewable Energy, 2022, vol. 184, issue C, 1074-1090

Abstract: The photovoltaic (PV) array is the most sensible element in PV plants, which is subject to different type of faults and defects. Thus, to keep these plants working efficiently they should be monitored and protected carefully. Some faults if they are not detected and isolated promptly they may lead to hazardous risks. The diagnosis of PV systems is widely addressed and recently machine learning (ML) and deep leaning (DL) methods drawn the attention of many researchers. Most applications of ML methods are based on the use of the I–V curves measurement, as enough information and features can be extracted from the curves, to detect and classify faults. These methods showed their capability to classify some faults, like line to line, degradation, disconnected PV modules, partial shading effect, and bypass diode faults. Another approach is based on the use of thermal or electroluminescence images of PV modules/arrays to detect and identify defects, such as hot spot, snails crack, and others. In this paper, different ML and ensemble learning (EL) methods are evaluated for fault diagnosis of PV arrays. The focus is mainly on the detection and classification of some complex faults that may affect the PV arrays, i.e., multiple faults, and faults with similar I–V curves, that are not evaluated before. The results showed the ability of the methods developed to detect faults with very good accuracy (classification rate = number of classified instances/total instances), within 99%, while the classification faults is done with an acceptable accuracy, within 81.73%. Through this study it is shown when really ML and EL methods should be used, and some recommendations, challenges and future directions in this topic are presented.

Keywords: Photovoltaic system; Fault detection; Fault classification; Machine learning; Ensemble learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121017316
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:184:y:2022:i:c:p:1074-1090

DOI: 10.1016/j.renene.2021.11.125

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:1074-1090